In most developed countries, analgesics top the list of the most frequent causes of poisoning. Currently, paracetamol overdose remains the most frequent, whilst ibuprofen has overtaken aspirin in keeping with changes in usage.

Paracetamol (acetaminophen)

Since the first cases of severe and fatal liver damage were reported in 1966, overdose of paracetamol has become the cause of 100–200 deaths in the UK each year. Paracetamol toxicity remains the leading cause of fulminant hepatic failure in the UK and is a common reason for liver transplantation. Knowledge of the toxic mechanism (Fig 1) has led to effective antidotes which provide substrates for increased glutathione production. Intravenous acetylcysteine (Parvolex®) is the treatment of choice in the UK. (Methionine is an oral alternative that can be considered only within the first 12 hours of overdose.) Although treatment of acute paracetamol overdose is well defined, decisions are complicated by late presentation, staggered overdoses and marked variation in individual susceptibility (Table 1).

Management of overdose

Table 2 lists the expected clinical features of paracetamol overdosage, but clinical information is of little help in determining the risk of toxicity. The interpretation of the plasma paracetamol concentration using a nomogram (Fig 2) is the established method for determining diagnosis, assessing risk (see Table 3 also) and deciding on management.

Activated charcoal can be given within one hour of ingestion. This is unnecessary in most children because self-administration of paracetamol elixir by a child rarely results in toxicity. Blood should be taken no earlier than four hours post-ingestion for measurement of the plasma paracetamol concentration in any patient following a single ingestion of more than 150 mg/kg or 12 g, whichever is smaller. The risk of liver damage can then be assessed using the paracetamol nomogram. Acetylcysteine should be commenced if the concentration is above the treatment line. An alternative treatment line exists for ‘high-risk’ patients (those fulfilling any of the criteria listed in Table 1). Doses as low as 75 mg/kg may be hepatotoxic in such patients; although there is little evidence supporting this figure, there are reasonable empirical reasons to accept it.

The plasma paracetamol concentration provides a good diagnostic indicator, and treatment is successful in patients presenting early with an accurate history, particularly with regard to time of ingestion which is essential for interpreting a paracetamol concentration. If the time of ingestion is unknown, or paracetamol has been taken chronically or in a staggered fashion (eg >2 hours between doses), the plasma paracetamol concentration cannot be interpreted accurately. Acetylcysteine should therefore be given if the total dose in 24 hours exceeds 150 mg/kg or 12 g.

Table 1. Some of the high-risk groups in paracetamol overdose.

- Malnourished patients (including anorexia nervosa/bulimia)
- Patients taking enzyme-inducing drugs (eg carbamazepine, phenytoin, barbiturates, primidone, glutethimide, rifampicin and the herbal preparation, St John’s Wort)
- Patients with induced liver enzymes due to chronic ethanol abuse
- HIV-positive patients

Fig 1. Metabolism of paracetamol to non-toxic and toxic metabolites.
whichever is the smaller (>75 mg/kg for high risk patients).

If the patient presents more than eight hours from ingestion, treatment should be commenced immediately (since the efficacy of the antidote begins to decrease at this time), but stopped if the paracetamol concentration is later found to be non-toxic. There are no data supporting the nomogram beyond 15 hours, after which time the line on the treatment graph is extrapolated (up to 24 hours post-ingestion). Results should therefore be interpreted with caution and a wider margin of error. The internationally normalised ratio, plasma creatinine, plasma venous bicarbonate, liver function tests and renal function are all useful markers of potential hepatotoxicity in such patients. Management of patients presenting more than 24 hours after ingestion should not be based on the paracetamol blood concentration or the paracetamol nomogram but on the results of measuring the above set of markers.

In some cases it is necessary to contact a specialist liver unit. The criteria for referral, which are all indications of severe hepatotoxicity and poor prognosis, are outlined in Table 4.

Non-steroidal anti-inflammatory drugs

The use of NSAIDs is now wide and varied. Unsurprisingly, the pattern of usage is reflected in the circumstances and frequency of NSAID overdose.

<table>
<thead>
<tr>
<th>Time post-overdose</th>
<th>Clinical features</th>
</tr>
</thead>
</table>
| Within the first 24 hours | - Often no symptoms, even following potentially fatal doses
- There may be:
 - nausea
 - vomiting
 - abdominal pain
 - pallor
 - rarely, drowsiness, coma, metabolic acidosis |
| 16–24 hours | A rise in:
- prothrombin time
- bilirubin levels
- transaminase activity |
| Within 48 hours | If changes occur in LFTs, hepatic and/or renal tenderness may develop |
| At 3–5 days | Peak hepatotoxicity with:
- jaundice
- coagulation abnormalities
- hepatic failure
- renal failure (also in the absence of liver toxicity)
- hypoglycaemia
- encephalopathy
- coma |
| Also reported |
- thrombocytopenia
- DIC
- hypokalaemia
- hypophosphataemia
- pancreatitis
- myocarditis |

DIC = disseminated intravascular coagulation; LFT = liver function test.

Table 3. Risk assessment of paracetamol overdose

<table>
<thead>
<tr>
<th>Level of overdose</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td><150 mg/kg (in patients not at high risk)</td>
<td>Liver damage unlikely</td>
</tr>
<tr>
<td>>150 mg/kg (or 12 g total)</td>
<td>Liver damage possible</td>
</tr>
<tr>
<td>>350 mg/kg</td>
<td>Severe liver damage in almost all cases</td>
</tr>
</tbody>
</table>

 Ibuprofen

Ibuprofen overdose has become common since it was licensed for over-the-counter use, although severe poisoning is rare. In 60–80% of patients symptoms are mild or absent. In the seven reported deaths, additional factors such as co-ingestants or refusal of treatment were involved. In contrast to aspirin and paracetamol, ibuprofen shows no evidence of a toxic mechanism in overdose that is different from its pharmacological mechanism. The overdose effects (Table 5) can be attributed either to inhibition of prostaglandin synthesis or to the acidic nature of the drug and its metabolites.

Toxic effects are unlikely at doses below 100 mg/kg, but may be severe above 400 mg/kg. Attempts have been made to relate blood ibuprofen concentrations to severity of poisoning, but there is no benefit in measuring blood ibuprofen.
CME Poisons

Management. The management of ibuprofen overdose is straightforward. Observation (4 hours) is required only for doses above 100 mg/kg. Oral fluids should be encouraged and renal function monitored.

Table 4. Criteria for liver unit referral.

- If the INR is >2 at 24 hours, >4 at 48 hours, or >6 at 72 hours post-ingestion
 OR
- PT in seconds (Manchester reagent) is greater than the number of hours since overdose
 OR if any of the following are present:
 - Elevated plasma creatinine (>200 µmol/l)
 - Hypoglycaemia
 - Acidosis even after resuscitation
 - Hypotension (mean arterial pressure <60 mmHg) even after resuscitation
 - Encephalopathy

INR = international normalised ratio; PT = prothrombin time.

Other non-steroidal

NSAIDs in general (except mefenamic acid and phenylbutazone) are similar to ibuprofen in their toxic effects and management. Initial reports of overdose of the newer cyclooxygenase (Cox) II inhibitors provide no evidence of unexpected toxic effects.

Mefenamic acid. Mefenamic acid (Ponstan®) is used in the treatment of dysmenorrhoea, and overdoses mostly occur in young women. ... and tachycardia. There is, however, a high incidence of convulsions, rarely leading to cardiac or respiratory arrest, though there are no reported deaths.

Phenylbutazone. In the UK phenylbutazone is licensed only for use in hospital, but it is often prescribed to holiday-makers abroad. Clinical effects are similar to salicylate toxicity, with severe poisoning characterised by multi-organ failure. Treatment is supportive.

Aspirin

Aspirin (acetylsalicylic acid) has analgesic, anti-inflammatory, antipyretic and thrombolytic properties. It is not licensed as a general-purpose analgesic in children because of an epidemiological association with Reye’s syndrome, but is still used for treatment of juvenile arthritis. The clinical course (see Table 6) of salicylate overdose is complex: the degree of metabolic disturbance determines toxicity, not just the salicylate level. The acute fatal dose of aspirin in adults has been estimated at 500 mg/kg. Young children and the elderly are most susceptible.

Mechanism of toxicity in overdose

In overdose, salicylate stimulates the respiratory centre, causing hyperventilation and a respiratory alkalosis. The body compensates by excreting bicarbonate, sodium and potassium ions, and water, resulting in electrolyte...
imbalance, dehydration and a decrease in buffering capacity. There is then an anion gap metabolic acidosis, which enhances transfer of the salicylate ion across the blood–brain barrier resulting in central nervous system (CNS) effects. Salicylate uncouples oxidative phosphorylation, leading to:

- decreased adenosine triphosphate (ATP) production
- increased oxygen utilisation
- increased carbon dioxide production (contributing to hyperventilation), and
- increased lactate production (contributing to metabolic acidosis).

The energy that would otherwise be used to produce ATP is dissipated as heat, causing flushing, sweating and further dehydration. Fluid loss also occurs from vomiting, and nausea may diminish fluid intake.

Aspirin is insoluble in acid and may form concretions in the stomach, prolonging absorption. It is rapidly converted to salicylic acid, which is then further metabolised to five main metabolites. The early metabolic pathways involve saturable hepatic enzymes, so in overdose they quickly become over-loaded. This results in a change from first-order kinetics (in which elimination is proportional to the plasma concentration) to zero-order kinetics (in which only a certain amount is eliminated, irrespective of the concentration). Thus, salicylate may accumulate following mild therapeutic overdoses, particularly in children, and prior therapeutic use may increase the toxicity of an acute overdose. Also, under zero-order kinetics the amount of salicylate excreted unchanged in the urine increases. This phenomenon is sensitive to changes in urine pH: as the pH rises, excretion of salicylate is enhanced.

Management of overdose

In smaller overdoses, activated charcoal is used for initial prevention of absorption; gastric lavage may be required in large aspirin overdoses. Repeat doses of activated charcoal have been recommended for preventing delayed absorption. Because of the tendency for continued absorption, salicylate concentrations must be measured every 2–3 hours until they have peaked. Rehydration is vital, with central venous pressure monitoring in moderate and severe cases, particularly in the elderly or those with cardiac disease. Renal function and metabolic status (urea and electrolytes, arterial blood gases, blood glucose, prothrombin time) should be closely monitored and corrected as necessary. Correction of a metabolic acidosis usually resolves CNS effects (since acidosis increases transfer of salicylate across the blood–brain barrier). Salicylate elimination may be further enhanced by administration of sodium bicarbonate (not forced diuresis) to make the urine alkaline. In severe cases, haemodialysis is useful, both to remove salicylate and to ameliorate the metabolic disturbances.

References

12. Jenkinson ML, Fitzpatrick R, Streete PJ,
Acute effects of drugs of abuse

John P Thompson MRCP(UK), Senior Lecturer in Clinical Pharmacology
National Poisons Information Service (Cardiff Centre), Academic Centre, Llandough Hospital, University of Wales College of Medicine, Cardiff

The adverse effects of drugs of abuse are both acute and chronic. Adverse effects on the user include risks associated both with the drug itself and with the route of administration. Intravenous drug abusers in particular are at increased risk.4 Drugs are often administered in secluded places where even transient respiratory depression may prove fatal. Infections associated with drug misuse include viral hepatitis, HIV, bacterial endocarditis, typically affecting the right side of the heart, and local infections at the site of injection.

Societal effects of drug abuse include those from the effect of crime undertaken to support an illegal and potentially expensive activity, and also indirectly due to the spread of infection into the wider community. Many treatment strategies for drug abusers (eg needle exchange schemes) focus upon harm reduction rather than an attempt to end misuse completely. Even these schemes are not without their own problems – methadone, prescribed as a heroin substitute, is now a regular cause of death.5

For overdose from drugs of abuse, the mainstay of treatment remains good supportive care. The importance of obtaining an accurate history and in maintaining airway, breathing and circulation cannot be overemphasised.

Key Points

Abuse of drugs is common

The diagnosis of drug abuse should be considered in patients with decreased consciousness

The diagnosis of drug abuse should be considered in agitated patients

Treatment is generally supportive and symptomatic

Harm may arise from both the route of administration and the drug itself

Street drugs are not pure products

Consider associated infectious diseases

Anticipate withdrawal syndromes

KEY WORDS: cannabis, cocaine, drugs of abuse, ecstasy, gamma hydroxybutyrate (GHB), heroin, lysergic acid diethylamide (LSD), overdose, poisoning